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The nonsteady flow of a rarefied gas, which occurs when gaseous clouds undergo ex- 

pansion and when gas flows out of a source, is discussed in this paper. Much material 

has been published on this particular problem. The motion which arises during the ex- 

pansion of simple gas configurations within a continuous medium was investigated in [1 to 31. 

From the gas-kinetic point of view, similar prob1em.s were discussed in [4], in which solu- 

tions were obtained, describing the collisionless expansion of gas clouds and the collision- 

less flow from a source and a jet. The expansion of symmetrical ‘puffs’ was also discussed 

in [s]. In [6] a solution for the expansion into a semi-infinite space was obtained. The pro- 

blem about the rarefied gas flow from a source was solved in [7 and 81. In all the above 

papers it was assumed that external fields of force were absent. Recently, a result was 

obtained for the expansion of a point mass ‘of gas in a constant field [9]. 

The solution in [4, 6 and 91 uses Boltzmann’s equation in which the collision integral 

is neglected as a basis to obtain the velocity distribution function. When external fields are 

absent, such a solotion can be written down at once. In the presence of a constant field 

of force, the solution of the Boltzmann equation was obtained in [9]. Below, a gronp of 

similar problems involving the presence of various fields of force, is proposed to be 

solved by a general method. The effectiveness of this method is illustrated by a series of 

examples. 

First we shall consider the motion of gas which, at the instant t = 7, is concentrated 

in the neighborhood of a point in space r. = (xi’, x2’, 9’). The velocity distribution 

function for the particles at the given instant f (u’, t) is known and there is also an 

external field of force. Then, the motion of gas will be described by the following system 

of equations, using Lagrange variables 

8% -@=F(r, u, q, $=u, a (a, % 5) n a (UlO* ua”, ua”) 
=f @O, t) 

where the time t and the initial velocity of the oorresponding particles are taken as 

the Lagrange coordinates. In equations ofmotion the functions Fi will be known functions of 

their argnments, and the last equation in (1) is the equation of continuity, in Lagrange 

variables [lo]. It follows, that to determine the whole flow pattern we must integrate the 
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system (1) with the initial conditions r = r, and u = u* when 8 = 7. Having solved this 

Cauchy problem, we shall find a parametric expression for velocity and deasity in terms of 

initial velocity. Excluding the initial velocity from the solution, we shalI obtain the 
velocity and the density distribution at each point in space as functions of time. 

It is necessary to note that this approach to the solution of the problem will be true 

so long as the Jacobian of the transformation d (xl, + 2,; ulo, uzo, zl:#“) # cf differs from 

zero, Vanishing of the Jacobian would imply that the particles which left the point with 

diffiverent initial velocities could be found occupying the same position in space, and from 

this instant, our solution would cease to be true. 

If on the other hand the gas occupied some region D at the initial instant, then the 

corresponding solution would be given by the formulas 

jV= ’ 
~SS 

u fr, 10, 4 z)dro, u+ 

m 

nudq, (drO = &~=dx~odQO) 
(2) t 

D 

If T is the time of parformance ofthe distributed source, then the solution in this case 

has the form: 

T 

u=_$ s sjs (31 
HI (t - t) nu dro dt, fl@-_r) -_ 

{ 

o PCr) 
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In the Eormnlas of (Z-3) the values n and u are the solution of the problem concerning 

the motion of a point mass of gas, which at the instant t = 7is located at the point r&with an 
initiai velocity distribution of the particles f (ro, u’, t). Knowing the mean gas velocity 

and the velocities from various points, it is possible to calculate the pressure tensor, the 

temperature and the higher moments. Thus, for the pressure tensor we obtain 

(41 

where we have the osnaf notation. For the temperature, we have 

(5) 

From the expression for hydrostatic pressure it follows that p = NkT. It is not difficult 

to verify that the hydrodynamic equations for the whole of the gas are satisfied identically. 

We shall consider several examples. 

1. Expansion of s gas cloud in a resisting medium. For the expansion of a point mass 

of gas, the system of equations has the form: 
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where m is the mass of a particle, k is Boltzmann’s constant, To is the temperature,and 

v is the collision frequency per single particle. The initial distribution function is as- 

sumed to be Maxwellian, although this need not be the case. Solving (6) and excluding the 

initial velocities, we obtain 

u = v (r - rd e-“’ , p 
1 - emvt 

n==n*v~ - ( ) x 
“’ (1 - e-vf)-s exp 

C 
- (1 _P~vr,, i (2% -“i +I (7) 

d=l 

When t+m, we obtain a quiescent gas whose limiting density distribution is 

Assumption of the friction tending to zero v + 0 in the expressions (‘7) results in a 
known solution [4 and 91 describing the expansion of s point mass of gas in free space. 

Using the expressions (2) for the mean velocity and density, we obtain the fowulss 

for the expansion of a volume ZJ 

ff the gas initially filled a semi-infinite space, a two-dimensional layer, a cylindrical 

cavity, or a sphere, then putting Y + 0 in (9) and carrying out a simple integration, results 

in known formulas describing collisionless expansion of the corresponding regions of gas 

[4 to 61. 

2. Collisionless source in a field of force (fig. 1). Let a point source of gas be placed 
at the origin of a coordinate system in presence of a constant field of force (the force of 
gravity). We also assume that the source strength I (for simplicity taken as constant) and 
the velocity distribution function for the emitted particles are given. We shall take the 
distribution function in the form: 

(IO) 

i.e. the particles are emitted with a mean velocity V = (0, V, , V,). Leaving out the inter 

mediate steps, we obtain 

N = Z (p,“{ ;,‘_-$j x 

n 

x exp 
c 
-P 

~*a+[~~-~Va(t--)12+[~~---a(t--Z)+~/2g(~-~)*la 

(r - %)a 

~~a+[T~-~~(t-~2)~2i[~3--Sft-~fi1/~~(t--.Ff2~2 

(t - r)l 
(i=% 2) (11) 
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FIG. 1 
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FIG. 2 

Assuming the source to work for an infinite time 7’ = m, we obtain from these formulas 

expressions for a point source when V, = V, = g = 0, but expressions for a collisonless jet 

when V, = g = 0, V, f 0 [4]. 

3. Nonsteady rarefied gas flow around a flat plate. Let the gas occupy a region D in 

the semi-infinite space r, > 0 at the initial instant of time. Maxwellian distribution fnno 

tion is assumed and a flat plate (fig. 2) is placed in the plane xS = 0. 

The expanding gas begins to flow around the plate. For the solution of the problem 
we must find the law of interaction between the incident particles and the plate. We will 
suppose that the incident particles are scattered diffusely, i.e. at the plate we shall as- 
sume the distribution function for the reflected particles to be fll] 

f w, 4, Pa, 7) = 2 I( 
S7 

XI, xa, r) exp I- PO (alo2 + uxo2 + ~so2)1 (12) 

Where I (x1, x, , T) is the flux of particles incident on the plate. 

The motion of the gas during the expansion of the cloud in the empty space is given 
by the formulas 

For the incident flux of particles on the plate we have 

Thus it appears that at the plate there is a distributed source with a known distribu- 
tion function for the scattered particles. Assuming &, constant, we will find a formula des- 
cribing the flow of the scattered particles in the form: 
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The integration in (15) is performed over the surface of the plate. The mean density 

of the incident snd reflected gas will be found in the form of the sum of the densities 

N* = N + N* , and the mean velocity by 

u* = (NU + N*IJ*) / N*. 

In order to find the flow behind the plate (13) must be integrated, but not over the 

whole region D, but onIy over that part of the initial volume, which is seen from the given 

point placed behind the plate, The distributions of temperature, pressure and other higher 

moments can also be determined, if required. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

BIBLIOGRAPHY 

Sedov, L.I., Metody podobiia i razmernosti v mekhsnike (Similitude and Dimensional 

Method8 in Mechanics). Gostekhizdat, 1954. 

Staniukovich, K.P. Neustanovivshiesia dvizheniia sploshnoi sredy (Nonsteady Flows 

of Continnons Medium). Gostekhizdat, 1955. 

Keller, J.B. Spherical. cylindrical and onedimensional gas flows. Quart. Appl. Math., 

Vol. 14, p. 171, 1956. 

Narasimha, R. Collisionless expansion of gases into vacuum. J. Fluid Mech., Vol. 12, 

No. 2, p. 294, 1962. 

Molmud, P. Expansion of rarefied gas cloud into a vacuum. Phys. Fluids., Vol. 3, 

p. 362, 1960. 

Keller, J.B. On the solution of the Boltzmanu equation for rarefied gases. Communs 

Pure and Appl. Math., Vol. 1, p. 275, 1948. 

Pressman, A. Ia. Ob. istechenii razrezhennogo gaza v vakuum iz tochechnogo istochnika, 

(Rarefied gas flow from a point source into a vacuum). Dokl, Akad. Nauk SSSR, Vol. 

138, No. 6, 1305, 1961. 

Mirels, H., Mullen, J.F. Expansion of gas clouds and hypersonic jets bounded by a 

vacuum. AIAA Journal, Vol. 1, No. 3, p. 596, 1963. 

Shidlovskii, V.P. Zadacha o razlete tochechnoi massy gaza i ee reshenie pri 

pomoshchi kineticheskoi teorii (Problem concerning the expansion of a point mass of 
gas and its solution by using kinetic theory) Prikl. Mekh. i Tekh. Fiz. No. 4, 74, 

1963. 

Kochin, N.E., Kibel’, LA. and Roze, N.V. Teoreticheskaia gidromekhanika 

(Theoretical Hydromechanics). Part 1, Gostekhizdat, 1949. 



Non-steady flow of rarefied gas 743 

11. Grad, R. On the kinetic theory of rarefied gases. Communs Pure and Appl. Math. 

Vol. 2, No. 4, p. 331, 1949. 

Translated by W.E.G.P. 


