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The nonsteady flow of a rarefied gas, which occurs when gaseous clouds undergo ex-
pansion and when gas flows out of a source, is discussed in this paper. Much material

has been published on this particular problem. The motion which arises during the ex-
pansion of simple gas configurations within a continuous medium was investigated in [1 to 3].
From the gas-kinetic point of view, similar problems were discussed in [4], in which solu-
tions were obtained, describing the collisionless expansion of gas clouds and the collision-
less flow from a source and a jet. The expansion of symmetrical ‘puffs’ was also discussed
in [5]. In [6] & solution for the expansion into a semi-infinite space was obtained. The pro-
blem about the rarefied gas flow from a source was solved in [7 and 8]. In all the above
papers it was assumed that external fields of force were absent. Recently, a result was
obtained for the expansion of a point mass of gas in a constant field [9].

The solution in [4, 6 and 9] uses Boltzmann's equation in which the collision integral
is neglected as a basis to obtain the velocity distribution function. When external fields are
absent, such a solution can be written down at once. In the presence of a constant field
of force, the solution of the Boltzmann equation was obtained in [9]. Below, a group of
similar problems involving the presence of various fields of force, is proposed to be
solved by a general method. The effectiveness of this method is illustrated by a series of
examples.

First we shall consider the motion of gas which, at the instant £t = 7, is concentrated
in the neighborhood of a point in space ry = (z,°, z,°, z,°). The velocity distribution
function for the particles at the given instant f (u°, 7) is known and there is also an
external field of force. Then, the motion of gas will be described by the following system
of equations, using Lagrange variables

a*r ar i} (171. Ty 178) — o
—=F(r,u, —_—=u, n_ 72 0 =f(u, T
at’ ( ? 1 )l 6t a( 10, go, ao) l( ¥ ) (1)

where the time ¢ and the initial velocity of the corresponding particles are taken as
the Lagrange coordinates. In equations of motion the functions F‘- will be known functions of
their arguments, and the last equation in (1) is the equation of continuity, in Lagrange
variables [10]. It follows, that to determine the whole flow pattern we must integrate the

736



Non-steady flow of rarefied gas 737

system (1) with the initial conditions r = ry and u = u® when ¢ = 7. Having solved this
Cauchy problem, we shall find a parametric expression for velocity and density in terms of
initial velocity. Excluding the initial velocity from the solution, we shall cbtain the
velocity and the density distribution at each point in space as functions of time.

It is necessary to note that this approach to the solution of the problem will be true
so long as the Jacobian of the transformation d (71, .. 73 ¥,°, u,°, w,°) =& 0 differs from
zero. Vanishing of the Jacobian would imply that the particles which left the point with
diffiverent initial velocities could be found occupying the same position in space, and from
this instant, our solution would cease to be true.

1f on the other hand the gas occupied some region D at the initial instant, then the
corresponding solution would be given by the formulas

N= S S S n{r, To, t, T)dro, U= 7% S S)S nudre, (dre = dz,°dz°dzs’) @)
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If T is the time of performance ofthe distributed source, then the solution in this case
has the form:
r
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In the formulas of (2.3) the values n and u are the solution of the problem concerning
the motion of a point mass of gas, which at the instant ¢ = Tis located at the point r4 with an
initial velocity distribution of the particles f (r,, u°, 7). Knowing the mean gas velocity
and the velocities from various points, it is possible to calculate the pressure tensor, the
temperature and the higher moments. Thus, for the pressure tensor we obtain

(4)
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where we have the usual notation. For the temperature, we have
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From the expression for hydrostatic pressure it follows that p = NkT. It is not difficalt
to verify that the hydrodynamic equations for the whole of the gas are satisfied identically.

We shall consider several examples.

1. Expansion of a gas cloud in a resisting medium. For the expansion of a point mass
of gas, the system of equations has the form;
or ar or
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where m is the mass of a particle, & is Boltzmann’s constant, T, is the temperature, and
v is the collision frequency per single particle. The initial distribution function is as«

sumed to be Maxwellian, although this need not be the case. Solving (6) and excluding the
initial velocities, we obtain
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When ¢ » oo, we obtain a quiescent gas whose limiting density distribution is

oo =novt (£ oxp [~ 3] (i o ®
f==1

Assumption of the friction tending to zero - 0 in the expressions {7) results in a
known solution {4 and 9] describing the expansion of a point mass of gas in free space.

Using the expressions (2) for the mean velocity and density, we obtain the formulas
for the expansion of a volume D
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If the gas initially filled a semi-infinite space, a two~dimensional layer, a cylindrical
cavity, or a sphere, then putting ¥ » 0 in (9) and carrying out a simple integration, results

in known formulas describing collisionless expansion of the corresponding regions of gas
[4 to 6].

2. Collisionless source in a field of force (fig. 1). Let a point source of gas be placed
at the origin of a coordinate system in presence of a constant field of force (the force of
gravity). We also assume that the source strength [ (for simplicity taken as constant) and
the velocity distribution function for the emitted particles are given. We shall take the
distribution function in the form:

f, =1 (%) B exp {— B [ur®® + (1. — Vot + (us®— Vs)2]} (10
i.e. the particles are emitted with a mean velocity V = (0, V,, V,). Leaving out the inter

mediate steps, we obtain T
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Assuming the source to work for an infinite time T = o0, we obtain from these formulas
expressions for a point source when V, = ¥, = g = 0, but expressions for a collisonless jet
when V, =g =0, V, £ 0 [4].

3. Nonsteady rarefied gas flow around a flat plate. Let the gas occupy a region D in
the semi-infinite space x; > 0 at the initial instant of time. Maxwellian distribution func-
tion is assumed and a flat plate (fig. 2) is placed in the plane x, = 0.

The expanding gas begins to flow aronnd the plate. For the solution of the problem
we must find the law of interaction between the incident particles and the plate. We will
suppose that the incident particles are scattered diffusely, i.e. at the plate we shall as-
sume the distribution function for the reflected particles to be [11]

2
73

Where I (x,, x,, 7) is the flux of particles incident on the plate.

e, 7y, 23, ) = I (z1, 75, ) exp [— Bo (us°2 + us® + ug?)] (12)

The motion of the gas during the expansion of the cloud in the empty space is given
by the formulas

(13)
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For the incident flux of particles on the plate we have

(e, 7, T) =10 (%)’/:S\’SJ%"_EXP [ws(xl—x1°)2+(xzw—xz°)2+:rs°z]dro (14)
b
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Thus it appears that at the plate there is a distributed source with a known distribu-
tion function for the scattered particles. Assuming 3, constant, we will find a formula des«
cribing the flow of the scattered particles in the form:

& a
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The integration in (15) is performed over the surface of the plate. The mean density
of the incident and reflected gas will be found in the form of the sum of the demnsities
N* =N + N, , and the mean velocity by
Us=(NU-+ N U, /N>
In order to find the flow behind the plate (13) must be integrated, but not over the
whole region D, but only over that part of the initial volume, which is seen from the given

point placed behind the plate. The distributions of temperature, pressure and other higher
moments can also be determined, if required.
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